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the normal distribution with mean 0 and variance var(o), given

—

in (29). Therefore Q vvar(8), which is the basis of the theoretical |
intervals in Table 2, provides centered intervals which have the shortest
possible widths. Since the confidence intervals based on the sample data
rely heavily on the procedure in Section 2, there is no reason to expect
them to be the shortest possible. Nevertheless the mean width of .9299
for k=0 and 0 =.9 indicates that, at least in this case, a scheme with

k=0 has 1i1ttle focusing power. We examine this issue in greater detail

shortly.

Notice that m** =1 for 0 =.1 and k=1. This agrees with theory since
every time a job enters service immediately upon arrival, a renewal occurs.
In particular the mean number of renewals for @ =.1 and w=0 is [5]

n(1-p) = 819.2, which does not differ substantially from the reported 99].

In section 3 we discussed a procedure for combining results for k=0
and k=1 to obtain shorter interval estimates. Table 3 lists the results
based on (12) and compares them with the theoretically shortest achievable
interval for 1-a =.9, the smallest achievable theoretical probability. The

dramatic reduction in widths compared to those in Table 2 is apparent. Notice

Table 3
Intersecting Confidence Intervals
Coverage Interval
% Rates Widths
0.1 Theoretical .90 0.0551
i Sample ‘ .96 0.0694
0.5 Theoretical .90 0.1918
Sample .95 0.2472
0.9 Theoretical .90 0.1/88
Sample .74 0.1666

that the rates for 0 = .1 and .5 remain. The poor performance for 0 = .9 is
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to be expected since Table 2 dictates a maximal achievable rate of .82.

We next discuss the poorer than expected performance for 0 =.9. Table
4 shows the frequency of intervals corresponding to the seven cases enum-
erated in Table 1. Notice that for © =.1 and .5 for k=0,1 the intervals
occur principally among cases 1,2 and 3. For 0 =.9 and k=1 case 3
occurs exclusively. However for © =.9 and k=0 the less desirable cases
4 and 5 occur in 98 replications. In particular the 91 of case 5 offer

insight into why the interval width for this case is so large in Table 2.

Table 4

Empirical Frequency of Interval Estimates by Case (n=8192)

Case Interval T e O S
1 Edgsdgld 80 98- | 58 83 1 0
2 fagsl) 1/ 0 26 0 0 0
3 [0.a,] 0 ] 0 12 1 | 100
4 | [0.a,]ula,.1] 3 0 7 0 7 0
5 [0.a,] 0 0 9 0 9 0
6 [a,.1] 0 | 0 0 0 0
7 [0,1] 0 0 0 0 0 0

Here f(©) in (10) is inverted from the desirable situation that arises
in cases 1,2 and 3.

Before passing final judgement it is instructive to investigate the
effect of increased sample size on coverage rate and interval width for
0=.9. Table 5 compares results for n=8192 and n=16384. Notice the
substantial improvement in coverage rate for n=16384 and k=0. Reqrettahly

no similar improvement occurs for the interval width. Moreover,

okttt it T T —
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lable 5

Comparison of Results for 0=.9 and n=8192, 16384

Order of No. of
-4| Coverage | Interval| Scheme Renewals
Mean | Variance x 10 Rate Width m** N -
—t— ——
n=8192
Theoretical 0.9000 29.54 0.95 0.2131 n.a. n.a.
Sample: k=0 0.9000 35.05 0.82 0.9299 13 718
k=11 0.9000 24.92 0.91 0.2257 38 6/64
n=16384
Theoretical | 0.9000 14.77 0.95 0.1507 n.a. n.a.
Sample: k=0 |(0.8996 12.00 0.95 0.9275 13 1362
k=1 10.8996 12.82 0.94 0.2028 38 13537
Intersecting
Intervals
n=8192
Theoretical ]0.9000 n.a. >.90 0.1788 n.a. n.a.
Sample 0.9000 n.a. 0.74 0.1666 n.a. n.a.
n=16384
Theoretical {0.9000 n.a. >.90 0.1264 n.a. n.a.
Sample 0.8996 n.a. 0.89 0.1518 n.a. n.a.
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The use of intersecting intervals offers little improvement over k=1.

| A check of the interval case frequencies in Table 6 shows that while case

5 occurs less frequently for the larger n, it is still dominant for

k=0. l
i
Table 6 ;
Case Frequency Comparison for © =.9 ?
k=0 k=1
Case Interval n=8192 n=16384 n=8192 n=16384
| 1 [a1,az] 1 10 0 0
2 [a],l] 0 13 0 0
3 [O,az] 1 0 100 100
' 4 (0.a,] [a,,1] 7 5 0 0
5 [O,a]] 91 72 0 0
6 [62,1] 0 0 0 0
7 [0,1] 0 0 0 0

9. Recommendations

The results in Section 8 offer an encouraging picture for fractile

estimation and provides evidence on how to judge computed interval estimates
for their usefulness. Based on these resu}ts one can recommend the following
steps:
1. Use the computing schemes in Sections 6 and the criterion (27)
in Section 7.

2. If the intervals are case 1,2 or 3 for k=0 and k=1, use these

intervals and, if desired, form the intersecting interval

(with lower probability) as in Section 3.
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3. If cases 4, 5, 6 or 7 arise for k=0 do not use the interval.
Do likewise for k=1.
4. 1If the nunber of renewals turns out to be small do not use the

intervals since the applicability of asymptotic results remains

i
in question. : (
. i
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Appendix

The appendix contains algorithms for computing point and 1-.
confidence interval estimates for O = PriW, < w} for specified w, a and

sample size n.

RUNS converts a sample record W(1),...,W(n) to a sequence of run lengths

L(1),...,L(M) , where M < n, and computes a point estimate of 0.

INPUT %
JMAX = upper bound on M to be considered.
FRACTW = w

n nﬁmber of observations in original W record.
{W(i)} = sample record.

ouTPUT
THETA = point estimate of O.
JMAX = largest value of M used.
n = actual number of observations used.
{L(j)} = sequence of run lengths.

*%
KUTS computes the cutpoints for rule m in (27).
INPUT

JMAX, n, {L(j)} from RUNS output.
k = 0 if recurrent state is all zeros,
~ 1 1 if recurrent state is all ones.

QUTPUT

JM = number of cutpoints < JMAX/2 + 1 .
{M(j)} = sequence of cutpoints for j=1,...,dM .
{COUNT(i)} = frequency distribution of run lengths for k's.

NOTE: This algorithm defines M(0) - 0 and can be dropped if the
zero subscript is not permitted. The COUNT sequence, although

not required, may assist one in determining the degree of confidence
to have in the overall interval estimation procedure. See Section 9.
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CALC computes the sample variances described in Section 6.

INPUT
JMAX and {L(j)} from RUNS output. .
m = length of the recurrent state y .
; k = from KUTS input, k=0,1 .
3 OuTPUT
3 C = sum of the C as defined in (22).

S = sum of the S as defined in (22)
SC = sample var1ance of the CJ, S (C) as defined in (23).
: SS = sample variance of the Sj, S (S) as defined in (23).
: SCS = sample covariance of Cj and Sj, s(C,S) as defined in (23). |
' N = N -1 as defined in (22). h

t

NOTE: This algorithm may be used for any m between | and M(JM),
where M(JM) may be found from the output of KUTS. For m=0, which

is the assumption of independence, one should not use this routine

but notice that: C=n, S=nTHETA, SC=SCS=0, N=n and SS=nTHETA(I-THETA),
where THETA is taken from the output of RUNS.

CI calculates the endpoints of the 1 - a confidence interval for O and
estimates the variance of Z defined in (7).
INPUT
THETA = point estimate for O from the output of RUNS.

ZALPHA = the (1-a/2) quantile of the standard normal distribution.
C, S, SC, SS, SCS from the output of CALC.

oUTPUT
SZ = s2(Z) as defined in (25).
Al = lower limit of confidence interval.

A2 = upper limit of confiidence interval.
B2 = coefficient of quadratic term of f(0) in Table 2.
DISC = discriminant for f(0O) in Table 2.

NOTE: 1f DISC is negative then one has Case 7 of Table 2. If B2
is negative one has an inverted interval, Cases 4,5 or 6 of Table 2.
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Algorithm RUNS

L.
2.

10.
i
|
13.
14.
15.
16.
|7
18.
19.
20.
21.

e ]

L3}« @,

Je Sl

If j < JMAX go to 2.

Sl o

XOLD « 0.

L(1) « -1,

i<,

THETA < 0.

L(3) < L(§)+.

XNEW < 0

If W(i) < FRACTW then XNEW <« 1.
THETA ~ THETA + XNEW

J <3+ (XNEW-XOLD)? .

i« i4] .,

XOLD <« XNEW .

If j < JMAX and i < n go to 10.
JMAX <« j-1.

n <« i-1,

THETA « THETA/n .

RETURN .




Algorithm KUTS

1.
2:

10.
L
12.
3
14.
15.
16.
17.
18.
19.
20.
AR

T+

i<« i+l

COUNT(i) « O .

If i <n go to 2.

Je -1

J o« J+l .

COUNT(L(2j+k+1)) <« COUNT(L(2j+k+1)) + 1 .
If § < i.p.[(JIMAX-k-1)/2] go to 6.
M(0) < 0.

J+~0.

1«0

1+ i+] .

If COUNT(i) = 0 and i < n go to 12.
If M(j) = i go to 17.

i<

M(3) « i.

J < j+1 .

M(j) « i+) .

If i <ngo to 12.

M « j-1.

RETURN .

.
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Algorithm CALC
) R ER = [
2. J o« j+1 .
3. If L(2j+k+1) < m and 2j+k+1 < JMAX go to 2. ¢
4. K1 < j . |
5. j « i.p.[(JIMAX-k-1)/2] +1.
G e T
7. If L(2j+k+1) <m and j > K] go to 6.
B kPl
9. N« -1.
10. S < -m-.
11. P« -m .
12. C«0 .
13. LENGTH <« -m .
14. R« 0 .
16 0« 0
16. SS « 0.
17. SC « 0.
18. SR « 0.
19. jJ <Kl = 1.
20. j <« j*1.
21. X « L(2j+k+1).
22. If X <mgo to 34.
23. C « C+ X + LENGTH.
28, S«S+X+P. -4
& R+ R+Q
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26.
27.
28.
29.
30.
31.
32.
33.
34.
39
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.

~26-

N«N+1+X-m,.

SC < SC+ X - m + (LENGTH + m)2.
SS <SS+ X-m+ (P+ m)2.
SR < SR + Q2.

LENGTH « 0 .,

P«0.

Q«0.

X< 0.

If j > K2 go to 41.

LENGTH < LENGTH + X.
P<«P+X.

X « L(2j+k+2).

LENGTH < LENGTH + X.
Q«Q+X.

Go to 20.

If N< 0 go to 49.

SE = (SE = 02N .
$S « (SS - SZ/N).
SR « (SR - RZ/N).

SS « kSS + (1-k)SR .
SR < kSR + (1-k)SS.

S <« kS + (1-k)R.

SES = (SC * 558 -~ SR}/,

RETURN .




Algorithm CI

[ P
2.
3

10.
1.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.

Al < 0.
PN i

SZ « SS - 2THETA(SCS) + THETASC.
B2 « 2 - ZALPHA%SC .

Bl « 2(C S - ZALPHA®SCS).

BO « S° - ZALPHAZSS .

DISC « B1° - 4B0 B2 .

If B2 = 0 go to 19.

If DISC < 0 go to 18.

Al < (B1 - DISCZ)/(2B2).
A2 < (Bl + DISC%)/(2B2) .
If B2 > 0 go to 16.
TEMP < Al.

Al < A2,

A2 < TEMP.

If A1 < O then Al < O .
If A2 > 1 then A2 « 1 .
RETURN .

If Bl > O then Al < BO/BI.
If B1 - 0 then A2 < BO/BI.
Go to 16.
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